
http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Syllabus
• Chapter-1 (Introduction): Algorithms, Analysing Algorithms, Efficiency of an Algorithm, Time and Space Complexity,

Asymptotic notations: Big-Oh, Time-Space trade-off Complexity of Algorithms, Growth of Functions, Performance
Measurements.

• Chapter-2 (Sorting and Order Statistics): Concept of Searching, Sequential search, Index Sequential Search, Binary Search Shell
Sort, Quick Sort, Merge Sort, Heap Sort, Comparison of Sorting Algorithms, Sorting in Linear Time. Sequential search, Binary
Search, Comparison and Analysis Internal Sorting: Insertion Sort, Selection, Bubble Sort, Quick Sort, Two Way Merge Sort,
Heap Sort, Radix Sort, Practical consideration for Internal Sorting.

• Chapter-3 (Divide and Conquer): with Examples Such as Sorting, Matrix Multiplication, Convex Hull and Searching.

• Chapter-4 (Greedy Methods): with Examples Such as Optimal Reliability Allocation, Knapsack, Huffman algorithm

• Chapter-5 (Minimum Spanning Trees) – Prim’s and Kruskal’s Algorithms,

• Chapter-6 (Single Source Shortest Paths): - Dijkstra’s and Bellman Ford Algorithms.

• Chapter-7 (Dynamic Programming) with Examples Such as Knapsack. All Pair Shortest Paths – Warshal’s and Floyd’s
Algorithms, Resource Allocation Problem. Backtracking, Branch and Bound with Examples Such as Travelling Salesman
Problem, Graph Coloring, n-Queen Problem, Hamiltonian Cycles and Sum of Subsets.

• Chapter-8 (Advanced Data Structures): Red-Black Trees, B – Trees, Binomial Heaps, Fibonacci Heaps, Tries, Skip List,
Introduction to Activity Networks Connected Component.

• Chapter-9 (Selected Topics): Algebraic Computation, Fast Fourier Transform, String Matching, Theory of NPCompleteness,
Approximation Algorithms and Randomized Algorithms .

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Chapter-1 (Introduction)
Algorithms, Analysing Algorithms,

Efficiency of an Algorithm, Time and Space
Complexity, Asymptotic notations: Big-Oh,

Time-Space trade-off Complexity of
Algorithms, Growth of Functions,

Performance Measurements.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find the Largest Number Among Three Numbers ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

1. Start
2. Read the three numbers to be compared, as A, B and C.
3. Check if A is greater than B.
 3.1 If true, then check if A is greater than C.
 3.1.1 If true, print 'A' as the greatest number.
 3.1.2 If false, print 'C' as the greatest number.
 3.2 If false, then check if B is greater than C.
 3.2.1 If true, print 'B' as the greatest number.
 3.2.2 If false, print 'C' as the greatest number.
4. End

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

#include <stdio.h>
int main()
{

int A, B, C;

printf("Enter the numbers A, B and C: ");
scanf("%d %d %d", &A, &B, &C);

if (A >= B && A >= C)
printf("%d is the largest number.", A);

if (B >= A && B >= C)
printf("%d is the largest number.", B);

if (C >= A && C >= B)
printf("%d is the largest number.", C);

return 0;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Introduction to Algorithm

• In mathematics and computer science, an algorithm is a finite
sequence of well-defined, computer-implementable instructions,
typically to solve a class of problems or to perform a computation. A
stem by step Procedure.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Algorithms are unambiguous specifications for performing
calculation, data processing, automated reasoning, and other tasks.

बेटा %कताब(को आग लगा दो

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Will accept Zero or more input, but generate at least
one output.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Properties of Algorithm
• Should terminate in finite time
• Unambiguous
• Input Zero or more output at least one
• Every instruction in algo should be effective
• It should be deterministic

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Algorithm Program
Written in design Phase Written in Implementation Phase

Needs Domain Knowledge Needs Programmer Knowledge

Can be Written in Any Language Can be Written in Programming
Language

Independent of H/w & S/w Dependent of H/w & S/w

We analysis Algorithm for time &
space We test programs for faults

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Problem Solving Cycle
• Problem Definition: Understand Problem
• Constraints & Conditions: Understand constraints if any
• Design Strategies (Algorithmic Strategy)
• Express & Develop the algo
• Validation (Dry run)
• Analysis (Space and Time analysis)
• Coding
• Testing & Debugging
• Installation
• Maintenance

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Need for Analysis
• We do analysis of algorithm to do a performance comparison

between different algorithm to figure out which one is best possible
option.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• What parameters can be considered for comparison between cars?

For Algo?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Following are the parameters which can be considered
while analysis of an algorithm
• Time
• Space
• Bandwidth
• Register
• Battery power

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Out of all time is the most important Criteria for analysis of algorithm

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• How to analysis time?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Types of Analysis
• Experimental or
• Apostrium or
• Relative analysis

• Apriori Analysis or
• Independent analysis or
• Absolute analysis

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Experimental or Apostrium or relative analysis : Means analysis of
algorithm after it is converted to code. Implement both the algorithms
and run the two programs on your computer for different inputs and
see which one takes less time.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Advantage: Exact values no rough

• Disadvantage: final result instead of depending only algorithm
depends on many other factors like background software & hardware,
programming language, even the temperature of the room.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Apriori Analysis or Independent analysis or Absolute analysis: we do
analysis using asymptomatic notations and mathematical tools of only
algorithm, i.e. before converting it into program of a particular
programming language.

• It is a determination of order of magnitude of a statement.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• In Asymptotic Analysis, we evaluate the performance of an algorithm in terms of
input size (we don’t measure the actual running time). We calculate, how does
the time (or space) taken by an algorithm increases with the input size.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Asymptotic Analysis is not perfect, but that’s the best way available for analyzing
algorithms.

• It might be possible that those large inputs are never given to your software and
an algorithm which is asymptotically slower, always performs better for your
particular situation. So, you may end up choosing an algorithm that is
Asymptotically slower but faster for your software.

• Advantage: Uniform result depends only on algorithm.
• Disadvantage: Estimated or approximate value no accurate and precise value.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Asymptotic Notations
• Asymptotic notations are Abstract notation for describing the behavior of

algorithm and determine the rate of growth of a function.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Big O Notation
• The Big O notation defines an upper bound of an algorithm, it bounds a function only from above.
• The Big O notation is useful when we only have upper bound on time complexity of an algorithm.
• Many times, we easily find an upper bound by simply looking at the algorithm.
• O(g(n)) = {f(n): there exist positive constants C and N0 such that 0 <= f(n) <= C*G(n) for all N >= N0}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Ω Notation
• Just as Big O notation provides an asymptotic upper bound on a function, Ω notation provides an

asymptotic lower bound.
• Ω Notation can be useful when we have lower bound on time complexity of an algorithm.
• For a given function g(n), we denote by Ω(g(n)) the set of functions.
• Ω (g(n)) = {f(n): there exist positive constants c and n0 such that 0 <= c*g(n) <= f(n) for all n >= n0}.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Theta Notation
• Θ Notation: The theta notation bounds a function from above and below, so it defines exact

asymptotic behaviour.
• For a given function g(n), we denote Θ(g(n)) is following set of functions.
• Θ(g(n)) = {f(n): there exist positive constants C1, C2 and n0 such that 0 <= C1*g(n) <= f(n) <=

C2*g(n) for all n >= n0}
• The above definition means, if f(n) is theta of g(n), then the value f(n) is always between

C1*g(n) and C2*g(n) for large values of n (n >= n0).
• The definition of theta also requires that f(n) must be non-negative for values of n greater

than n0.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Small notations
• Every thing is same as big notations just, just we take strictly

increasing or monotonically increasing case and equal case is
not allowed.

• Analogy of asymptomatic notation with real numbers
f(n) is O((g(n)) a <= b
f(n) is Ω (g(n)) a >= b
f(n) is Θ (g(n)) a = b
f(n) is o(g(n)) a < b
f(n) is ω(g(n)) a > b

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Conclusion
• Most useful notation is Theta, followed by Big O

• the Omega notation is the least used notation among all three

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Master Theorem

• In the analysis of algorithms, the master theorem for divide-and-conquer
recurrences provides an asymptotic analysis (using Big O notation) for recurrence
relations of types that occur in the analysis of many divide and conquer
algorithms.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The approach was first presented by Jon Bentley, Dorothea Haken, and James B.
Saxe in 1980, where it was described as a "unifying method" for solving such
recurrences. The name "master theorem" was popularized by the widely used
algorithms textbook Introduction to Algorithms by Cormen, Leiserson, Rivest,
and Stein.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The above equation divides the problem into ‘a’ number of
subproblems recursively, a >= 1

• Each subproblem being of size n/b. the subproblems (of size less
than k) that do not recurse. (b > 1)

• where f(n) is the time to create the subproblems and combine their
results in the above procedure.

T(n) = a T(n/b) + f(n)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Case 1

• If f(n) = O (n log
b

 a - ϵ) for some constant ϵ > 0,
• then T(n) = Θ (n log

b
a)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Case1
• If f(n) = O (n log

b
 a - ϵ) for some constant ϵ > 0,

• then T(n) = Θ (n log
b

a)

• Q T(n) = 4T(n/2) + n?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Case1
• If f(n) = O (n log

b
 a - ϵ) for some constant ϵ > 0,

• then T(n) = Θ (n log
b

a)

• Q T(n) = 9T(n/3) + n?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Case1
• If f(n) = O (n log

b
 a - ϵ) for some constant ϵ > 0,

• then T(n) = Θ (n log
b

a)

• Q T(n) = 9T(n/3) + n2?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Case1
• If f(n) = O (n log

b
 a - ϵ) for some constant ϵ > 0,

• then T(n) = Θ (n log
b

a)

• Q T(n) = 8T(n/2) + n2?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Q T(n) = 7T(n/2) + n2?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Case 2

• If f(n) = Θ (n log
b

 a),

• then T(n) = Θ (n log
b

a lg n)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Case1
• If f(n) = O (n log

b
 a - ϵ) for some constant ϵ > 0,

• then T(n) = Θ (n log
b

a)
• Case2

• If f(n) = Θ (n log
b

 a),
• then T(n) = Θ (n log

b
a lg n)

• Q T(n) = 2T(n/2) + n?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Case1
• If f(n) = O (n log

b
 a - ϵ) for some constant ϵ > 0,

• then T(n) = Θ (n log
b

a)
• Case2

• If f(n) = Θ (n log
b

 a),
• then T(n) = Θ (n log

b
a lg n)

• Q T(n) = T(2n/3) + 1?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Case 3
• If f(n) = Ω (n log

b
 a + ϵ) for some constant ϵ > 0,

• and if a f(n/b) <= c f(n) for some constant c < 1 and all sufficiently
large n,
• then T(n) = Θ (f(n))

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Case1
• If f(n) = O (n log

b
 a - ϵ) for some constant ϵ > 0,

• then T(n) = Θ (n log
b

a)
• Case2

• If f(n) = Θ (n log
b

 a),
• then T(n) = Θ (n log

b
a lg n)

• Case3
• f(n) = Ω (n log

b
 a + ϵ) for some constant ϵ > 0,

• and if a f(n/b) <= c f(n) for some constant c < 1 and all sufficiently large n, then T(n) = Θ
(f(n))

• T(n) = T(n/3) + n ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Case1
• If f(n) = O (n log

b
 a - ϵ) for some constant ϵ > 0,

• then T(n) = Θ (n log
b

a)
• Case2

• If f(n) = Θ (n log
b

 a),
• then T(n) = Θ (n log

b
a lg n)

• Case3
• f(n) = Ω (n log

b
 a + ϵ) for some constant ϵ > 0,

• and if a f(n/b) <= c f(n) for some constant c < 1 and all sufficiently large n, then T(n) = Θ
(f(n))

• T(n) = 3T(n/4) + n lgn ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Iteration method

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following three functions.
 f1 = 10n
 f2 = nlogn

 f3 = n√n
Which one of the following options arranges the functions in the
increasing order of asymptotic growth rate?

f2 < f3 < f4

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following functions from positives integers to real
numbers 10, √n, n, log2n, 100/n. The CORRECT arrangement of the
above functions in increasing order of asymptotic complexity

100/n < 10 < log2n < √n < n

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Ch-2
Sorting and Order Statistics

Concept of Searching, Sequential search, Index Sequential
Search, Binary Search Shell Sort, Quick Sort, Merge Sort,
Heap Sort, Comparison of Sorting Algorithms, Sorting in

Linear Time. Sequential search, Binary Search,
Comparison and Analysis Internal Sorting: Insertion Sort,
Selection, Bubble Sort, Quick Sort, Two Way Merge Sort,
Heap Sort, Radix Sort, Practical consideration for Internal

Sorting.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

School Morning Assembly

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Sorting

• The process of arranging data items (numeric or char) in a specific order either
increasing or decreasing order is called sorting. It is an important process which is used
in a number of applications as many times we require sorted data.

• There are number of approaches available for sorting and some parameter based on
which we judge the performance of these algorithm.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Sorting Algorithm Best Case Worst Case

Selection O(n2) O(n2)

Bubble O(n2) / O(n) O(n2)

Insertion O(n) O(n2)

Merge O(nlogn) O(nlogn)

Heap O(nlogn) O(nlogn)

Quick O(nlogn) O(n2)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Space complexity: - Internal sorting and External sorting

• Internal/Inplace sorting means when a sorting algorithm does not require any
additional memory apart from the space acquired by the problem. Eg Heap Sort

• While on the other and some sorting algo requires additional space called
external sorting algorithm. Eg Merge Sort

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Stable or Unstable: - When the input sequence contains copies then we check
whether the output sequence preserve the order of the respective copies or
not?
• Stable(Bubble Sort), Unstable(Insertion Sort)

• Even studying all the criterion, we understand that the different sorting algo have
different advantages in different scenarios therefor we must understand the
actual logic of the algorithm and then can solve problems based on them.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Selection Sort
• The algorithm divides the input list into two parts: a sorted sublist of items which is built up

from left to right at the front (left) of the list and a sublist of the remaining unsorted items
that occupy the rest of the list.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Initially, the sorted sublist is empty and the unsorted sublist is the entire input list. The
algorithm proceeds by finding the smallest (or largest, depending on sorting order) element in
the unsorted sublist, exchanging (swapping) it with the leftmost unsorted element (putting it
in sorted order), and moving the sublist boundaries one element to the right.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Selection Sort(Algo)
Selection sort (A, n)

{
 for k ß1 to n-1
 {
 min = A[k]
 Loc = k
 for j ßk+1 to n
 {
 if(min > A[j])
 {
 min = A[j]
 Loc = j
 }
 }
 swap(A[k],A[Loc])
 }
}

1 2 3 4 5 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Selection Sort(Analysis)
Selection sort (A, n)

{
 for k ß1 to n-1
 {
 min = A[k]
 Loc = k
 for j ßk+1 to n
 {
 if(min > A[j])
 {
 min = A[j]
 Loc = j
 }
 }
 swap(A[k],A[Loc])
 }
}

• Depends on structure or content ?
• Structure

• Internal/External sort algorithm ?
• Internal

• Stable/Unstable sort algorithm ?
• Unstable

• Best case time complexity ?
• O(n2)

• Worst case time complexity ?
• O(n2)

• Algorithmic Approach?
• Subtract and Conquer

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Selection Sort (Conclusion)

• Selection sort is noted for its simplicity and has performance advantages over
more complicated algorithms in certain situations(number of swaps, which is
n − 1 in the worst case).

• It has an O(n2) time complexity, which makes it inefficient on large lists.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bubble / Shell / Sinking Sort

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bubble / Shell / Sinking Sort
• Bubble sort, sometimes referred to as sinking sort, is a simple sorting

algorithm that repeatedly steps through the list, compares adjacent
elements and swaps them if they are in the wrong order. The pass
through the list is repeated until the list is sorted. The algorithm, which is
a comparison sort, is named for the way smaller or larger elements
"bubble" to the top of the list.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bubble / Shell / Sinking Sort(Algo without flag)

Bubble sort (A, n)
{
 for k ß1 to n-1
 {
 ptr = 1
 while(ptr <= n-k)
 {
 if(A[ptr] > A[ptr+1])
 {
 exchange(A[ptr],A[ptr+1])
 }
 ptr = ptr+1
 }
 }
}

1 2 3 4 5 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bubble / Shell / Sinking Sort (Algo with flag)
Bubble sort (A, n)
{
 for k ß1 to n-1
 {
 ptr = 1
 while(ptr <= n-k)
 {
 if(A[ptr] > A[ptr+1])
 {
 exchange(A[ptr],A[ptr+1])
 }
 ptr = ptr+1
 }
 }
}

Bubble sort (A, n)
{
 for k ß1 to n-1
 {
 ptr = 1
 while(ptr <= n-k)
 {
 if(A[ptr] > A[ptr+1])
 {
 exchange(A[ptr],A[ptr+1])
 flag = 1
 }
 ptr = ptr+1
 }

 if(!flag)
 {
 break;
 }

}
}

1 2 3 4 5 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bubble / Shell / Sinking Sort (Analysis with flag)
Bubble sort (A, n)
{
 for k ß1 to n-1
 {
 ptr = 1
 while(ptr <= n-k)
 {
 if(A[ptr] > A[ptr+1])
 {
 exchange(A[ptr],A[ptr+1])
 flag = 1
 }
 ptr = ptr+1
 }
 if(!flag)
 {
 break;
 }

}
}

• Depends on structure or content ?
• Both

• Internal/External sort algorithm ?
• Internal

• Stable/Unstable sort algorithm ?
• Stable

• Best case time complexity ?
• O(n)

• Worst case time complexity ?
• O(n2)

• Algorithmic Approach?
• Subtract and Conquer

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bubble / Shell / Sinking Sort (Conclusion)

• Even other О(n2) sorting algorithms, such as insertion sort selection sort, generally run
faster than bubble sort, and are no more complex. Therefore, bubble sort is not a
practical sorting algorithm. This simple algorithm performs poorly in real world use and
is used primarily as an educational tool. More efficient algorithms such as heap sort,
or merge sort are used by the sorting libraries built into popular programming
languages such as Python and Java.

• When the list is already sorted (best-case), the complexity of bubble sort is only O(n).
By contrast, most other algorithms, even those with better average-case complexity,
perform their entire sorting process on the set and thus are more complex. However,
not only does insertion sort share this advantage, but it also performs better on a list
that is substantially sorted (having a small number of inversions).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion Sort

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion Sort
• At each iteration, insertion sort removes one element from the input data, finds the location it

belongs within the sorted list, and inserts it there. It repeats until no input elements remain.

• At each array-position, it checks the value there against the largest value in the sorted list
(which happens to be next to it, in the previous array-position checked).

• If larger, it leaves the element in place and moves to the next. If smaller, it finds the correct
position within the sorted list, shifts all the larger values up to make a space, and inserts into
that correct position.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The resulting array after k iterations has the property where the first k + 1 entries are
sorted ("+1" because the first entry is skipped). In each iteration the first remaining
entry of the input is removed, and inserted into the result at the correct position, thus
extending the result:

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion Sort (Algo)

Insertion sort (A, n)
{
 for j ß2 to n
 {
 key = A[j]
 i = j - 1
 while(i>0 and A[i] > key)
 {
 A[i+1] = A[i]
 i = i-1
 }
 A[i+1]=key
 }
}

1 2 3 4 5 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion Sort (Analysis)

Insertion sort (A, n)
{
 for j ß2 to n
 {
 key = A[j]
 i = j - 1
 while(i>0 and A[i] > key)
 {
 A[i+1] = A[i]
 i = i-1
 }
 A[i+1]=key
 }
}

• Depends on structure or content ?
• Both

• Internal/External sort algorithm ?
• Internal

• Stable/Unstable sort algorithm ?
• Stable

• Best case time complexity ?
• O(n)

• Worst case time complexity ?
• O(n2)

• Algorithmic Approach?
• Subtract and Conquer

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion Sort (Conclusion)
• Insertion sort is much less efficient on large lists than more advanced algorithms such

as heapsort(O(nlogn)), or merge sort (O(nlogn)). However, insertion sort provides
several advantages:

• Efficient for (quite) small data sets, much better other quadratic sorting algorithms
such as selection and bubble sort.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Merge Sort
• In computer science, merge sort is an efficient, general-purpose, comparison-based sorting algorithm.

• Merge sort is a divide and conquer algorithm that was invented by John von Neumann in 1945.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE
Von Neumann Architecture

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Merge Sort
• Conceptually, a merge sort works as follows:

• Divide the unsorted list into n sublists, each containing one element (a list of one
element is considered sorted).

• Repeatedly merge sublists to produce new sorted sublists until there is only one
sublist remaining. This will be the sorted list.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Merge Sort(Algo)

Merge_Sort(A, p, r)
{
 if(p < r)
 {
 q ß ⌊ (p + r)/2 ⌋
 Merge_Sort (A, p, q)
 Merge_Sort (A, q + 1, r)
 Merge (A, p, q, r)
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Merge (A, p, q, r)
{
 n1 ß q – p + 1
 n2 ß r – q
 Create array L [1……... n1+1] and R [1……... n2+1]
 for i ß 1 to n1

 do L[i] = A [p + i - 1]
 for j ß 1 to n2

 do R[j] = A [j + q]
 L [n1+1] ß ∞
 R [n2+1] ß ∞
 i ß 1
 j ß 1
 for k ß p to r
 {
 if(L[i] <= R[j])
 {
 A[k] = L[i]
 i = i + 1
 }
 Else
 {
 A[k] = R[j]
 j = j + 1
 }
 }
}

Merge Sort(Algo)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Merge Sort(Analysis)

• Depends on structure or content ?
• Structure

• Internal/External sort algorithm ?
• External

• Stable/Unstable sort algorithm ?
• Stable

• Best case time complexity ?
• O(nlogn)

• Worst case time complexity ?
• O(nlogn)

• Algorithmic Approach?
• Divide and Conquer

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Merge Sort(Conclusion)
• If the running time of merge sort for a list of length n is T(n), then the recurrence

• T(n) = 2T(n/2) + n

• In the worst case, merge sort does about 39% fewer comparisons than quicksort does
in the average case.

• Merge sort is more efficient than quicksort for some types of lists if the data to be
sorted can only be efficiently accessed sequentially, and is thus popular in languages
such as Lisp, where sequentially accessed data structures are very common.

• Merge sort’s requires O(n) space complexity.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Heap Sort

• Heapsort was invented by J. W. J. Williams in 1964. This was also the birth of the
heap, presented already by Williams as a useful data structure in its own right.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Heap Sort
• In computer science, heapsort is a comparison-based sorting algorithm.

• Heapsort divides its input into a sorted and an unsorted region, and it iteratively
shrinks the unsorted region by extracting the largest element from it and inserting it
into the sorted region.

• Heapsort does not waste time with a linear-time scan of the unsorted region; rather,
heap sort maintains the unsorted region in a heap data structure to more quickly find
the largest element in each step.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The heapsort algorithm can be divided into two parts.

• In the first step, a heap is built out of the data. The heap is often placed in an array
with the layout of a complete binary tree.

• In the second step, a sorted array is created by repeatedly removing the largest
element from the heap (the root of the heap), and inserting it into the array. The
heap is updated after each removal to maintain the heap property. Once all objects
have been removed from the heap, the result is a sorted array.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Heap Sort(Algo)

Heap_Sort(A)
{
 Build_Max_heap(A)
 for i ß length[A] down to 2
 {
 do exchange (A[1] ßàA[i])
 Heap-size[A] ß Heap-size[A] – 1
 Max-Heapify(A,1)
 }
}

1 2 3 4 5 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Heap Sort(Algo)

Build_Max_Heap(A)
{
 Heap-size[A] ß length[A]
 for i ß ⌊ length[A]/2 ⌋ down to 1
 {
 do Max-Heapify (A, i)
 }
}

1 2 3 4 5 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Heap Sort(Algo)
Max-Heapify(A, i)
{
 L ß Left[i]
 R ß Right[i]
 if(L <= Heap_size[A] and A[L] > A[i])
 Largest ß L
 Else
 Largest ß i
 if(R <= Heap_size[A] and A[r] > A[Largest])
 Largest ß R
 if(Largest != i)
 {
 Exchange(A[i] ßàA[Largest])
 Max-Heapify(A, Largest)
 }
}

1 2 3 4 5 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Heap Sort(Analysis)

• Depends on structure or content ?
• Both

• Internal/External sort algorithm ?
• Internal

• Stable/Unstable sort algorithm ?
• Unstable

• Best case time complexity ?
• O(nlogn)

• Worst case time complexity ?
• O(nlogn)

• Algorithmic Approach?
• Mixed Approach

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Quick Sort
• Quicksort is an developed by British computer scientist Tony Hoare and published in

1961, it is still a commonly used algorithm for sorting. When implemented well, it can
be somewhat faster than merge sort and about two or three times faster
than heapsort.

• His work earned him the Turing Award, usually regarded
as the highest distinction in computer science, in 1980.

• Along with Edsger Dijkstra, formulated the dining
philosophers problem. He is also credited with
development of the null pointer.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Quicksort is a divide-and-conquer algorithm. It works by selecting a
'pivot' element from the array and partitioning the other elements into two
sub-arrays, according to whether they are less than or greater than the
pivot.

• The sub-arrays are then sorted recursively. This can be done in-place,
requiring small additional amounts of memory to perform the sorting.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Quick Sort(Algo)

Quick_Sort(A, p, r)
{
 if(p < r)
 {
 q ß partition (A, p, r)
 quick_Sort(A, p, q - 1)
 quick_Sort(A, q + 1, r)
 }
}

1 2 3 4 5 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Quick Sort(Algo)
Partition (A, p, r)
{
 x ß A[r]
 i ß p – 1
 for j ß p to r – 1
 {
 if(A[j] <= x)
 {
 i ß i + 1
 Exchange(A[i] ßàA[j])
 }
 }
 Exchange(A[i + 1] ßàA[r])
 return i+1
}

1 2 3 4 5 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Quick Sort(Analysis)

• Depends on structure or content ?
• Both

• Internal/External sort algorithm ?
• Internal

• Stable/Unstable sort algorithm ?
• Unstable

• Best case time complexity ?
• O(nlogn)

• Worst case time complexity ?
• O(n2)

• Algorithmic Approach?
• Divide and Conquer

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Counting Sort
• Although radix sorting itself dates back far longer, counting sort, and its

application to radix sorting, were both invented by Harold H. Seward in 1954.

http://www.knowledgegate.in/GATE
https://en.wikipedia.org/wiki/Harold_H._Seward

http://www.knowledgegate.in/GATE

Counting Sort

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Counting Sort
• Counting sort is a non-comparative stable sorting algorithm suitable for sorting

elements within a specific range. It counts the number of objects that have
distinct key values, and then does some arithmetic to calculate the position of
each object in the output sequence.

• Counting sort is efficient if the range of the input data is not significantly greater
than the number of objects to be sorted. It's not a comparison-based sort, and
its time complexity is O(n+k), where n is the number of elements in the input
array and k is the range of the input. Space complexity is O(k).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Counting Sort
Counting_Sort(A, B, k)
{
 let C[0..k] be a new array
 For I ß 0 to k
 do C[i] ß 0
 for j ß 1 to length[A]
 do C[A[j]] ß C[A[j]] + 1
 for i ß 1tok
 do C[i] ß C[i] + C[i–1]
 for j ß length[A] down to 1
 do B[C[A[j]]] ß A[j]
 C[A[j]] ß C[A[j]] – 1
}

1 2 3 4 5 6 7 8
7 4 6 1 3 1 3 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Radix Sort
• Radix sort dates back as far as 1887 to the work of Herman Hollerith on

tabulating machines. Radix sorting algorithms came into common use as a way
to sort punched cards as early as 1923.

http://www.knowledgegate.in/GATE
https://en.wikipedia.org/wiki/Herman_Hollerith
https://en.wikipedia.org/wiki/Tabulating_machines
https://en.wikipedia.org/wiki/Punched_card

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Radix Sort
• An IBM card sorter performing a radix sort on a large set of punched cards. Cards are fed into

a hopper below the operator's chin and are sorted into one of the machine's 13 output
baskets, based on the data punched into one column on the cards. The crank near the input
hopper is used to move the read head to the next column as the sort progresses. The rack in
back holds cards from the previous sorting pass.

http://www.knowledgegate.in/GATE
https://en.wikipedia.org/wiki/IBM_card_sorter
https://en.wikipedia.org/wiki/Punched_cards

http://www.knowledgegate.in/GATE

Radix Sort
• Radix Sort is an integer sorting algorithm that organizes data by individual digits which have

the same position and value. It starts by sorting integers based on their least significant digit
using a stable sorting method like counting sort to keep the same relative order for similar key
values. After sorting by the least significant digit, it progresses to the next digit to the left,
continuing this process until it has sorted by the most significant digit.

• The time complexity is generally O(nk), where n is the number of elements and k is the
number of passes needed, which depends on the number of digits in the largest number.

• Radix Sort excels at sorting fixed-length number sequences like phone numbers or dates and
may outperform comparison-based sorts such as quicksort or mergesort if the numbers aren’t
much longer than the array size. It’s particularly adept at handling large data sets because its
speed depends more on digit count rather than the actual size of the numbers being sorted.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Radix Sort

radixSort(arr)
{
 max = largest element in the given array
 d = number of digits in the largest element (or, max)
 Now, create d buckets of size 0 - 9
 for i -> 0 to d
 sort the array elements using counting sort (or any stable sort) according to the

digits at the ith place
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bucket Sort
• Bucket sort, also known as bin sort, is an effective sorting algorithm ideal for uniformly

distributed data. Here are the condensed key points:
• Element Distribution: Elements are distributed across several buckets based on their

value.
• Sorting Buckets: Each bucket is sorted individually, either using another sorting algorithm

or by applying bucket sort recursively.
• Combining Buckets: Sorted buckets are merged back into a single array for the final sorted

order.
• Performance: Best for data evenly distributed over a range. Average and best-case

complexity is O(n+k), with n being the number of elements and k the number of buckets.
• Space Requirement: Occupies O(n⋅k) space due to the buckets.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Stability: Maintains the relative order of equal elements.
• Ideal Scenarios: Most efficient for large sets of floating-point numbers or uniformly

spread data.
• Drawbacks: Performance drops for non-uniformly distributed data and depends on the

input distribution and bucket count.
• In brief, bucket sort is fast and stable, best for evenly distributed datasets. It segregates

elements into buckets, sorts these, and then merges them into a sorted array.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bucket Sort
.79 .43 .60 .11 .32 .29 .57 .82 .94 .07

0

1

2

3

4

5

6

7

8

9

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

BUCKET-SORT (A)
{
 let B[0 . . n - 1] be a new array
 n = A.length
 for i = 0 to n - 1
 make B[i] an empty list
 for i = 1 to n
 Insert A[i] into list B[nA[i]]
 for i = 0 to n - 1
 sort list B[i] with insertion sort
 concatenate the lists together
 B[0], B[1],...B[n - 1] (in order)
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Ch-3

Divide and Conquer
with Examples Such as Sorting,
Matrix Multiplication, Convex

Hull and Searching.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Divide and conquer
• Divide and conquer is a fundamental algorithm design paradigm in computer science.

It works by recursively breaking down a problem into two or more sub-problems of the
same or related type, until these become simple enough to be solved directly. The
solutions to the sub-problems are then combined to give a solution to the original
problem.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Here are the main steps involved in a divide and conquer algorithm:
• Divide: Split the problem into several sub-problems that are smaller

instances of the same problem.
• Conquer: Solve the sub-problems recursively. If the sub-problems are small

enough, solve them in a straightforward manner.
• Combine: Combine the solutions of the sub-problems into the solution for

the original problem.
• The efficiency of a divide and conquer algorithm depends on the size reduction

at each division and the efficiency of the combine step. When properly
designed, such algorithms can lead to significant reductions in time complexity,
often achieving logarithmic growth in computational cost.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Merge Sort

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Quick Sort

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

What is Matrix Multiplication

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Matrix Multiplication with Divide and Conquer

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Matrix Multiplication with Divide and Conquer

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Matrix Multiplication with Divide and Conquer

• Volker Strassen first published this algorithm in
1969 and thereby proved that the n3 general
matrix multiplication algorithm was not optimal.
The Strassen algorithm's publication resulted in
more research about matrix multiplication that led
to both asymptotically lower bounds and improved
computational upper bounds.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Strassens Matrix Multiplication

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Convex Hull
• The convex hull problem is a classic algorithmic problem in the field of computational

geometry. The goal is to find the smallest convex polygon that encloses a set of points in a
plane. In simple terms, if you imagine a set of nails hammered into a board and you wrap a
rubber band around all the nails, the rubber band would outline the convex hull.

• Convex Hull: The smallest convex polygon formed by a set of points such that no point from
the set lies outside the polygon.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The convex hull is a fundamental structure in computational geometry, with
applications in pattern recognition, image processing, GIS (Geographic
Information Systems), and in solving other geometric problems.

Applications:
• Pathfinding and motion planning problems.
• Collision detection in physical simulations and computer games.
• Determining the boundary of an object in machine learning and computer

vision.
• Clustering analysis in data mining.
• Supporting GIS operations like creating the boundary for geographical datasets.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

GRAHAM-SCAN(Q)
{
 Let p0 be the point in Q with the minimum y-coordinate, or the leftmost such point in
case of a tie.
 Let <p1, p2, ..., pm> be the remaining points in Q, sorted by polar angle in counter
clockwise order around p0.
 Top[S] ← 0
 PUSH(p0, S)
 PUSH(p1, S)
 PUSH(p2, S)
 for i ← 3 to m
 do while the angle formed by points NEXT-TO-TOP(S), Top(S), and pi makes a non-
left turn
 POP(S)
 PUSH(pi, S)
 Return S
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Binary Search
• Binary search is a classic searching algorithm used to find the position

of a target value within a sorted array. It is much more efficient than a
linear search, offering O(logn) time complexity, where n is the number
of element in the array.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Binary search locates a target value within a sorted array using a divide-and-conquer
approach:
• Initialization: Set low and high pointers at the array's start and end.
• Middle Index: Calculate the middle of low and high. Use low + (high - low) / 2 to

prevent overflow.
• Comparison: Check if the middle element is the target. If yes, return its index.
• Direction: If the target is smaller, search the left side (high becomes middle - 1); if

larger, search the right (low becomes middle + 1).
• Iteration: Repeat until low exceeds high.
• Outcome: Return the target's index or indicate it's not found.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Ch-4
Greedy Methods

with Examples Such as Optimal
Reliability Allocation, Knapsack,

Huffman algorithm

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE
लालच बरु' बला है,

अगर बरेु काम के /लए 1कया गया हो तो

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Greedy Algorithm

• A greedy algorithm is a problem solving approach like Subtract and conquer,
divide and conquer and dynamic programming, which is used for solving
optimality problem(one Solution), out of all feasible solution.

• Minimum Spanning Tree

• Single source shortest path

• Huffman Coding

• Knapsack Problem

• Optimal Merge Pattern

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Greedy Algorithm
• A greedy algorithm is any algorithm that follows the problem-solving heuristic of making

the locally optimal choice at each stage with the intent of finding a global optimum.

Bank Officer IAS Officer

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Will greedy always work? - In many problems, a greedy strategy does not usually produce an
optimal solution, but nonetheless a greedy heuristic may yield locally optimal solutions that
approximate a globally optimal solution in a reasonable amount of time.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• For example, a greedy strategy for the traveling salesman problem (which is of a high
computational complexity) is the following heuristic:

• "At each step of the journey, visit the nearest unvisited city." This heuristic does not intend to
find a best solution, but it terminates in a reasonable number of steps; finding an optimal
solution to such a complex problem typically requires unreasonably many steps.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• We can make whatever choice seems best at the moment and then
solve the subproblems that arise later.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• It iteratively makes one greedy choice after another, reducing each
given problem into a smaller one. In other words, a greedy algorithm
never reconsiders its choices.

इस मे%ो म' जाऊँ या अगल0 म'?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• This is the main difference from dynamic programming, which is exhaustive and
is guaranteed to find the solution. After every stage, dynamic programming
makes decisions based on all the decisions made in the previous stage, and may
reconsider the previous stage's algorithmic path to solution.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Optimization Problem
• An optimization problem is a type of problem that seeks to find the best solution from

all feasible solutions. Here’s a simple breakdown:

• Optimization Problems:
• Objective: Minimize or maximize some quantity (like cost, profit, distance).
• Constraints: Set of restrictions or conditions that the solution must satisfy.
• Feasible Solution: A solution that meets all constraints.
• Optimal Solution: A feasible solution that yields the best value of the objective

function.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Activity Selection Problem
• The Activity Selection Problem is a classic problem and often used to illustrate

the concept of greedy algorithms. Here's a simplified explanation:

• You have a set of activities, each with a start and an end time. Each activity has
si a start time, and fi a finish time. If activity i is selected, the resource is
occupied in the intervals (si, fi).We say i and j are compatible activities if their
start and finish time does not overlap i.e., i and j compatible if si >= fj and sj >= fi

• You need to select the maximum number of activities that don't overlap in time.
The Goal is to Maximize the number of activities selected.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Approach:
• Sort Activities: First, sort all activities by their finish time.
• Select First Activity: Choose the activity that finishes first.
• Iterate and Select: For each subsequent activity, if its start time is after or at

the finish time of the previously selected activity, select it.

• Activities (start time, end time): (1, 3), (2, 4), (3, 5), (5, 7)
• Sorted by end time: (1, 3), (3, 5), (2, 4), (5, 7)
• Selected Activities: (1, 3), (3, 5), (5, 7)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• At each step, you make the choice that seems best at the moment (choosing the activity that
ends earliest). This local optimization leads to a globally optimal solution.

• Use Cases:
• Scheduling tasks in a single resource environment (like a single meeting room).
• Allocating time slots for interviews or exams where no overlap is allowed.

• Complexity:
• If the activities are not sorted, the main complexity is in the sorting step, which is

typically O(n log n) for n activities.
• The selection process is O(n), as it involves iterating through the list once.
• This problem is an excellent example to teach students about greedy algorithms, showing

how a locally optimal choice can lead to a globally optimal solution in certain scenarios.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Knap Sack Problem
• The knapsack problem or rucksack problem is a problem in combinatorial

optimization: Given a set of items, each with a weight and a value, determine the
number of each item to include in a collection so that the total weight is less
than or equal to a given limit and the total value is as large as possible.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Knap Sack problem can be studied in two versions fractional Knap Sack
and 0/1 Knap Sack, here we will be discussing Fractional Knap Sack and
then 0/1 Knap Sack will be solved in Dynamic Programming.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the weights and values of items listed below. Note that there is only
one unit of each item.

Greedy by Profit

Object O1 O2 O3

Profit 25 24 15

Weight 18 15 10

Object O1 O2 O3

Profit 25 24 15
Weight 18 15 10

Solution

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the weights and values of items listed below. Note that there is only
one unit of each item.

Greedy by Weight

Object O1 O2 O3

Profit 25 24 15

Weight 18 15 10

Object O1 O2 O3

Profit 25 24 15
Weight 18 15 10

Solution

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the weights and values of items listed below. Note that there is only
one unit of each item.

Greedy by Profit/Weight

Object O1 O2 O3

Profit 25 24 15

Weight 18 15 10

Object O1 O2 O3

Profit 25 24 15
Weight 18 15 10

Profit/Weight 1.38 1.6 1.5
Solution

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Problem Definition
• More formally there are n number of objects O1, O2, O3…On, each object has a

weight associated with its Wi, and a profit associated with it Pi, we can take xi
fraction of the object ranging from 0 <= xi <= 1

• Weight Condition ∑!"#$ 𝑊𝑖	. 𝑋𝑖 <= M

• Profit ∑!"#$ 𝑃𝑖	. 𝑋𝑖

X1 X2 X3 X N-1 X N

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The knapsack problem has been studied for more
than a century, with early works dating as far back
as 1897. The name "knapsack problem" dates back
to the early works of mathematician Tobias
Dantzig (1884–1956).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Conclusion
• It derives its name from the problem faced by someone who is constrained by a fixed-

size knapsack and must fill it with the most valuable items.

• The problem often arises in resource allocation where there are financial
constraints and is studied in fields such as
• Combinatorics
• Computer science
• Complexity theory
• Cryptography
• Applied mathematics.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Job sequencing with Deadline
• We are given n-jobs, where each job is associated with a deadline Di and a profit

Pi if the job if finished before the deadline.

• We have single CPU with Non-Primitive Scheduling.

• With each job we assume arrival time is 0, burst time of each job requirement is
1.

• Select a Subset of ‘n’ jobs, such that, the jobs in the subset can be completed
with in the deadline and generate Max profit.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q if we have for task T1, T2, T3, T4, having Deadline D1 = 2, D2 =1, D3=2,
D4=1, and profit P1=100, P2=10, P3=27, P4=15, find the maximum profit
possible? Task T1 T2 T3 T4

Profit 100 10 27 15

Deadline 2 1 2 1

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Task T1 T2 T3 T4 T5 T6 T7

Profit 35 30 25 20 15 12 5

Deadline 3 4 4 2 3 1 2

1 2 3 4

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Huffman coding
• In computer science and information theory, a Huffman code is a particular type of

optimal prefix code that is commonly used for lossless data compression.

• The process of finding or using such a code proceeds by means of Huffman coding, an
algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published
in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• In 1951, David A. Huffman and his MIT information theory classmates were given the choice of a term
paper or a final exam. The professor, Robert M. Fano, assigned a term paper on the problem of finding
the most efficient binary code.

• Huffman, unable to prove any codes were the most efficient, was about to give up and start studying for
the final when he hit upon the idea of using a frequency-sorted binary tree and quickly proved this
method the most efficient.

• In doing so, Huffman outdid Fano, who had worked with Claude Shannon to develop a similar code.
Building the tree from the bottom up guaranteed optimality, unlike the top-down approach of Shannon–
Fano coding.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The output from Huffman's algorithm can be viewed as a variable-
length code table for encoding a source symbol (such as a character in
a file).

• It always satisfy prefix-code property.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The algorithm derives this table from the estimated probability or frequency of
occurrence (weight) for each possible value of the source symbol.

• Huffman's method can be efficiently implemented, finding a code in time linear
to the number of input weights if these weights are sorted.

• However, although optimal among methods encoding symbols separately,
Huffman coding is not always optimal among all compression methods.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following character with frequency and generate Huffman tree, find
Huffman code for each character, find the number of bits required for a message of
100 characters? Character Frequency

M1 12
M2 4
M3 45
M4 17
M5 23

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Ch-5
Minimum Spanning Trees
Prim’s and Kruskal’s

Algorithms

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Spanning tree
• A tree T is said to be spanning tree of a connected graph G, if T is a

subgraph of G and T contains all vertices of G.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• A minimum spanning tree (MST) or minimum weight spanning tree is
a subset of the edges of a connected, edge-weighted undirected graph
that connects all the vertices together, without any cycles and with the
minimum possible total edge weight.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Minimum spanning tree (MST) can be more than one

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Kruskal Algorithm
• Joseph Bernard Kruskal, Jr. was an American mathematician,

statistician, computer scientist and psychometrician.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Kruskal had two notable brothers
Martin David Kruskal (September 28, 1925 – December 26,
2006) was an American mathematician and physicist. He made
fundamental contributions in many areas of mathematics and
science, ranging from plasma physics to general relativity and
from nonlinear analysis to asymptotic analysis. His most celebrated
contribution was in the theory of solitons.

William Henry Kruskal (October 10, 1919 – April 21, 2005) was an
American mathematician and statistician. He is best known for having
formulated the Kruskal–Wallis one-way analysis of variance (together
with W. Allen Wallis), a widely used nonparametric statistical method.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Kruskal Algorithm Actual idea

• सबसे छोटा Edge उठाने का

• Cycle बने तो भगाने का

• जब तक graph connect
ना हो चलते जाने का

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Kruskal
Minimum_Spanning_Tree (G, w)
{
 A ß ɸ
 For each vertex v ϵ V(G)
 {
 do Make_Set(v)
 }
 Sort the edges of E into non-decreasing order by weight w
 for each edge (u, v) ϵ E, then in non-decreasing order by weights
 {
 if (Find_Set(u) != Find_Set(v))
 {
 A ß A U {(u, v)}
 UNION (u, v)
 }
 }
 Return A
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following graph: Which one of the following is NOT the sequence of edges added
to the minimum spanning tree using Kruskal’s algorithm?
(A) (b, e),(e, f),(a, c),(b, c),(f, g),(c, d)

(B) (b, e),(e, f),(a, c),(f, g),(b, c),(c, d)

(C) (b, e),(a, c),(e, f),(b, c),(f, g),(c, d)

(D) (b, e),(e, f),(b, c),(a, c),(f, g),(c, d)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Prim’s Algorithm

• The algorithm was developed in 1930 by Czech mathematician Vojtěch Jarník

• And later rediscovered and republished by computer scientists Robert C. Prim in 1957

• And Edsger W. Dijkstra in 1959.

• Therefore, it is also sometimes called the Jarník's algorithm, Prim–Jarník
algorithm, Prim–Dijkstra algorithm or the DJP algorithm.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Vojtěch Jarník (1897–1970) was a Czech mathematician
who worked for many years as a professor and administrator
at Charles University, and helped found the Czechoslovak
Academy of Sciences. He is the namesake of Jarník's
algorithm for minimum spanning trees.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Robert Clay Prim (born September 25, 1921 in
Sweetwater, Texas) is an American mathematician
and computer scientist.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Edsger Wybe Dijkstra (11 May 1930 – 6 August 2002) was a
Dutch computer scientist, programmer, software engineer,
systems scientist, and science essayist. He received the
1972 Turing Award for fundamental contributions to developing
programming languages.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Minimum_Spanning_Tree (G, W, R)
{

 for each u ϵ V(G)
 {

 key[u] ß ∞
 ∏[u] ß NIL

 }
 Key[r] ß 0
 Q ßV[G]
 While (Q != ɸ)
 {

 u ß Extract-Min(Q)
 For each v ϵ adj[u]
 {

 if (v ϵ Q and w(u, v) < key[v])
 {

 ∏[v] ß u
 key[u] ß w(u, v)

 }

 }

 }

}

a b c d e f g

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q For the undirected, weighted graph given below, which of the following sequences of
edges represents a correct execution of Prim’s algorithm to construct a Minimum Span-
ning Tree?

(A) (a, b), (d, f), (f, c), (g, i), (d, a), (g, h), (c, e), (f, h)
(B) (c, e), (c, f), (f, d), (d, a), (a, b), (g, h), (h, f), (g, i)
(C) (d, f), (f, c), (d, a), (a, b), (c, e), (f, h), (g, h), (g, i)
(D) (h, g), (g, i), (h, f), (f, c), (f, d), (d, a), (a, b), (c, e)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Ch-6
Single Source Shortest Paths
Dijkstra’s and Bellman

Ford Algorithms

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Single Source Shortest Path

• In graph theory, the shortest path problem is the problem of finding a path between
two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is
minimized.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Edsger Wybe Dijkstra (11 May 1930 – 6 August 2002) was a
Dutch computer scientist, programmer, software engineer, systems
scientist, and science essayist. He received the 1972 Turing Award for
fundamental contributions to developing programming languages.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• One morning I was shopping in Amsterdam with my young fiancée, and tired, we sat down on
the café terrace to drink a cup of coffee and I was just thinking about whether I could do this,
and I then designed the algorithm for the shortest path.

• As I said, it was a twenty-minute invention. In fact, it was published in ’59, three years later.
The publication is still readable, it is, in fact, quite nice.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• One of the reasons that it is so nice was that I designed it without pencil and paper. I learned
later that one of the advantages of designing without pencil and paper is that you are almost
forced to avoid all avoidable complexities.

• Eventually that algorithm became, to my great amazement, one of the cornerstones of my
fame.

• A widely used application of shortest path algorithm is network routing protocols, most
notably IS-IS (Intermediate System to Intermediate System) and Open Shortest Path First
(OSPF).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Dijkstra algorithm (G, W, S)
{
 initialize-Single-source (G, S)
 S ß ɸ
 Q ß V[G]
 While (Q != ɸ)
 {
 u ß extract-min (Q)
 S ß S U {u}
 for each vertex v ϵ adj(u)
 {
 relax (u, v, w)
 }
 }
}

P Q R S T U

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Initialize_Single_Source (G, S)
{
 for each vertex v ϵ V[G]
 {
 d[v] ß ∞
 ∏[v] ß NIL
 }
 d[S] ß 0
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Relax (u, v, w)
{
 if(d[v] > d[u] + w (u, v))
 {
 d[v] ß d[u] + w (u, v)
 ∏[v] ß u
 }
}

• Guarantee to find optimal solution in a connected
 graph with positive weights.
• Can fail on graph with negative weights.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Problem with Dijkstra's algorithm
• Negative Weight Edge

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bellman–Ford Algorithm

• The Bellman–Ford algorithm is an algorithm that computes shortest paths from
a single source vertex to all of the other vertices in a weighted digraph.

• It is slower than Dijkstra's algorithm for the same problem, but more versatile,
as it is capable of handling graphs in which some of the edge weights are
negative numbers.

• The algorithm was first proposed by Alfonso Shimbel (1955), but is instead
named after Richard Bellman and Lester Ford Jr., who published it
in 1958 and 1956, respectively.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

L. R. Ford JrRichard	E.	Bellman

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bellman_ford (G, W, S)
{
 initialize-Single-Source (G, S)
 for i ß 1 to |V(G)| - 1
 {
 for each edge (u, v) ϵ E(G)
 {
 Relax(u, v, w)
 }
 }
 for each edge (u, v) ϵ E(G)
 {
 if(d[v] > d[u] + w (u, v))
 {
 Return false
 }
 }
}

S T X Y Z

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Initialize_Single_Source (G, S)
{
 for each vertex v ϵ V[G]
 {
 d[v] ß ∞
 ∏[v] ß NIL
 }
 d[S] ß 0
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Relax (u, v, w)
{
 if(d[v] ß d[u] + w (u, v))
 {
 d[v] ß d[u] + w (u, v)
 ∏[v] ß u
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Bellman–Ford algorithm with negative weight cycle

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Ch-7
Dynamic Programming

with Examples Such as Knapsack. All Pair Shortest
Paths – Warshal’s and Floyd’s Algorithms, Resource

Allocation Problem. Backtracking, Branch and Bound
with Examples Such as Travelling Salesman Problem,

Graph Coloring, n-Queen Problem, Hamiltonian
Cycles and Sum of Subsets.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

अगर आप अपने Past से कुछ सीख नह0ं सकत े
तो जीवनभर छोटे काम ह0 करत ेरह:गे I

-Dynamic Programming

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Dynamic Programming
• Divide and conquer partition the problem into independent

subproblem, solve the subproblems recursively and then combine
their solutions to solve the original problems.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

n 0 1 2 3 4 5
F(n)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Dynamic programming is like the divide and conquer method, solve
problems by combining the solutions to the subproblems.

• In contrast, dynamic programming is applicable when the subproblems
are not independent, i.e. when subproblems share subsubproblems.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

O(N)

• A dynamic-programming algorithm solves every subsubproblems just one and
then saves its answer in a table there by avoiding the work of recomputing the
answer every time the subproblem is encountered.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Dynamic programming is typically applied to optimization problems. In such case
there can be many possible solutions. Each solution has a value, and we wish to
find a solution with the optimal value (minimum, maximum).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• There are four steps of dynamic programming

• Characterize the solution of an optimal solution.

• Recursively define the value of an optimal solution.

• Compute the value of an optimal solution in a bottom-up-fashion.

• Construct an optimal solution from computed information.

भाई असल0 बात तो example से समझआएगी

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

0/1 Knap Sack Problem
• The knapsack problem or rucksack problem is a problem in combinatorial

optimization: Given a set of items, each with a weight and a value, determine the
number of each item to include in a collection so that the total weight is less
than or equal to a given limit and the total value is as large as possible.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Problem Definition
• More formally there are n number of objects O1, O2, O3…On, each object has a

weight associated with its Wi, and a profit associated with it Pi, we can take xi
either 0 or 1.

• Weight Condition ∑!"#$ 𝑊𝑖	. 𝑋𝑖 <= M

• Profit ∑!"#$ 𝑃𝑖	. 𝑋𝑖

X1 X2 X3 X N-1 X N

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Object O1 O2 O3 O4

Profit 1 2 5 6
Weight 2 3 4 5

wt p W=0 W=1 W=2 W=3 W=4 W=5 W=6 W=7 W=8

0 0 0 0 0 0 0 0 0 0 0

1 2 0 0 1 1 1 1 1 1 1

2 3 0 0 1 2 2 3 3 3 3

5 4 0 0 1 2 5 5 6 7 7

6 5 0 0 1 2 5 6 6 7 8

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Floyd warshall problem

• The Floyd–Warshall algorithm was published in its currently recognized form
by Robert Floyd in 1962. However, it is essentially the same as algorithms previously
published by Stephen Warshall in 1962.

http://www.knowledgegate.in/GATE
https://en.wikipedia.org/wiki/Robert_W._Floyd
https://en.wikipedia.org/wiki/Stephen_Warshall

http://www.knowledgegate.in/GATE

Floyd warshall problem

• The Floyd-Warshall algorithm is used to find the shortest paths between all
pairs of vertices in a weighted graph.

• It uses a dynamic programming approach to incrementally improve the solution
by considering all possible paths.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Floyd warshall problem

D0 =

𝑎 𝑏 𝑐
𝑎
𝑏
𝑐

 ∏0 =

𝑎 𝑏 𝑐
𝑎
𝑏
𝑐

Db =

𝑎 𝑏 𝑐
𝑎
𝑏
𝑐

 ∏b =

𝑎 𝑏 𝑐
𝑎
𝑏
𝑐

Da =

𝑎 𝑏 𝑐
𝑎
𝑏
𝑐

 ∏a =

𝑎 𝑏 𝑐
𝑎
𝑏
𝑐

Dc =

𝑎 𝑏 𝑐
𝑎
𝑏
𝑐

 ∏c =

𝑎 𝑏 𝑐
𝑎
𝑏
𝑐

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Algorithm Steps:
• Initially, the distance between all pairs of vertices is assumed to be infinity,

except for the distance from a vertex to itself, which is zero.
• The algorithm then iteratively updates the distance matrix to include the

shortest path using at most k vertices, where k goes from 1 to the number of
vertices in the graph.

• If a shorter path is found, the distance matrix is updated accordingly.

• Time Complexity: It has a time complexity of O(n^3), where n is the number of
vertices in the graph.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Sum of subset problem
• Given a set of non-negative integers, and a value sum, determine if there is a subset of the

given set with sum equal to given sum.

Q Consider a set of non-negative integer S = {2, 3, 7, 8, 10}, find if there is a sub set of S with sum equal to 14?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

3

7

8

10

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The subset-sum problem is defined as follows. Given a set of n positive integers,
S = {a1, a2 ,a3 ,…,an} and positive integer W, is there a subset of S whose elements
sum to W

• A dynamic program for solving this problem uses a 2-dimensional Boolean array
X, with n rows and W+1 column. X[i, j],1 <= i <= n, 0 <= j <= W, is TRUE if and only
if there is a subset of {a1 ,a2 ,...,ai} whose elements sum to j.

• the following is valid for 2 <= i <= n and ai <= j <= W

• X[i, j] = X[i – 1, j] V X[i – 1, j – ai]

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Backtracking
• Backtracking is a programming method used to solve problems recursively by trying to build a

solution incrementally, one piece at a time, removing those solutions that fail to satisfy the
constraints (Bounding function)of the problem at any point of time.

• Backtracking uses brute force approach generating a State apace tree, following depth first
search.

• Backtracking is not for optimality problems; it is use in general where we have multiple
solution, and we want all those solutions.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Travelling Salesman Problem

• The Travelling Salesman Problem (TSP) is a classic problem in computer science and operations
research.

• Problem Definition: The TSP involves finding the shortest possible route that visits a set of cities and
returns to the origin city. It's an NP-hard problem in computational complexity theory. As the number
of cities increases, the number of possible routes increases factorially, making the problem
computationally intensive.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Travelling Salesman Problem

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Travelling Salesman Problem

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Graph colouring
• Problem Definition: It involves assigning colors to the vertices of a graph such that no two adjacent vertices share

the same color. The goal is to minimize the number of colors used.
• Applications: It's used in scheduling, assigning frequencies in mobile networks, map coloring, and solving Sudoku

puzzles.
• Chromatic Number: This is the minimum number of colors needed to color a graph. Determining this number is a

central challenge of the problem.
• NP-Hard Problem: Like the Travelling Salesman Problem, graph coloring is NP-Hard for general graphs. This means

finding the optimal solution is computationally challenging.
• Backtracking Algorithms: These are more exhaustive methods that try different color assignments and backtrack

when a conflict is found.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Graph colouring

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Graph colouring

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

N-Queens problem
• The N-Queens problem is a well-known puzzle in computer science where the aim is to place N

chess queens on an N×N chessboard without any queen threatening another. This means no
two queens can be in the same row, column, or diagonal.

• First queen will in first row, second queen in second row and so on and so for.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Hamiltonian
1. Hamiltonian Graph: - A Hamiltonian circuit in a connected graph is defined as a closed walk

that traverses every vertex of G exactly once, except of course the starting vertex, at which
the walk also terminates. A graph containing Hamiltonian circuit is called Hamiltonian graph.

2. Finding weather a graph is Hamiltonian or not is a NPC problem.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Start at a Vertex: Begin at any vertex in the
graph.

• Explore Paths: Choose a neighbor that has
not been visited and add it to the current
path.

• Check for Cycle: If all vertices are included in
the path and there is an edge from the last
vertex to the first, a Hamiltonian cycle has
been found.

• Backtrack if Stuck: If you reach a vertex that
has no unvisited neighbouring vertices, or
you can't form a cycle, backtrack to the
previous vertex and try a different path.

• Repeat: Continue this process, exploring
edges, backtracking when necessary, and
checking for cycles until all possibilities are
exhausted.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Aspect Backtracking Branch and Bound

Approach Systematic search for solution by trying and
eliminating possibilities.

Systematic search for solution using optimization
and partitioning.

Goal To find a feasible solution that satisfies all
constraints.

To find the optimal solution with respect to a given
objective.

Technique Removes candidates that fail to satisfy the
constraints of the problem.

Uses bounds to estimate the optimality of partial
solutions.

State Space Tree Pruning is used to chop off branches that
cannot possibly lead to a solution.

Branches are pruned based on bounds of the cost
function (lower and upper bounds).

Application Suitable for decision problems like puzzles. Used for optimization problems like integer
programming.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Ch-8
Advanced Data Structures

Red-Black Trees, B – Trees, Binomial
Heaps, Fibonacci Heaps, Tries, Skip

List, Introduction to Activity Networks
Connected Component.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Red-Black Trees

• Binary Search Trees (BSTs): The concept of binary search trees has been around
informally for a long time, but the binary tree data structure was first structured
and named in computer science literature by P.F. Windley, A.D. Booth, A.J.T.
Colin, and T.N. Hibbard between 1955 and 1962.

• May be Left-skewed or Right-skewed leading to O(n) worst case time complexity.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Red-Black Trees

• AVL Trees: AVL Trees, named after their inventors Georgy Adelson-Velsky and
Evgenii Landis, were introduced in 1962. They were the first dynamically
balanced trees to be proposed.

• No possibility of being Left-skewed or Right-skewed leading to O(log2n) worst
case time complexity.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Red-Black Trees

• AVL trees and Red-Black Trees are both self-balancing binary search trees, but there are certain issues
with AVL trees that Red-Black Trees address more effectively:

• Rotations for Balancing:
• AVL Trees: AVL trees maintain a stricter balance, requiring the heights of two child subtrees of any

node to differ by at most one. This can lead to more frequent and potentially complex rotations
upon insertions and deletions to maintain the strict height balance.

• Red-Black Trees: Red-Black Trees are more permissive with balance, allowing a greater difference
in black heights, which typically leads to fewer rotations needed after insertions and deletions.

• Use Cases:
• AVL Trees: AVL trees are more suitable for lookup-intensive applications because they are more

strictly balanced and therefore have better search times.
• Red-Black Trees: Red-Black Trees, being less strictly balanced, offer better performance for

insertions and deletions and are therefore more suitable for applications where the tree is
frequently modified.

• Algorithmic Complexity:
• Both AVL and Red-Black Trees offer O(logn) search, insertion, and deletion complexities. However,

the constants involved in these operations for AVL trees may be higher due to the need for more
rotations.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Red-Black Trees

• AVL Trees Example:
• Database Indexing: Used in databases for efficient search operations, especially when

reads are more frequent than writes. For instance, in a library's user database, AVL trees
can optimize user data retrieval based on sorted user IDs.

• Red-Black Trees Example:
• Programming Libraries: Common in standard libraries like C++ STL for implementing

std::map and std::set. Suitable for scenarios with frequent additions and deletions, such as
maintaining a sorted list of users in real-time applications.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Red-Black Trees
• A Red-Black Tree is a type of self-balancing binary search tree, where each node has an extra attribute: the color,

which is either red or black. Here are the defining properties that every Red-Black Tree adheres to:
• Node Color: Every node is colored, either red or black.
• Root Property: The root of the tree is always black.
• Leaf Nodes: Every leaf (NIL node, an empty/black node) is black.
• Red Node Rule: No two red nodes may be adjacent; a red node cannot have a red parent or red child.
• Black Height Consistency: Every path from a given node to any of its descendant NIL nodes must have the

same number of black nodes. This is known as the "black-height".

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• These properties ensure that the tree remains balanced, with the longest path from the root
to the farthest leaf not more than twice as long as the shortest path from the root to the
nearest leaf.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Unspecified Node Color (Violation: Node Color)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Red Root Node (Violation: Root Property)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Non-Black Leaf Node (Violation: Leaf Nodes)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Consecutive Red Nodes (Violation: Red Node Rule)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Unspecified Node Color (Violation: Node Color)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• If tree is empty then create newnode as root node with color black.
• If three is not empty then insert newnode with color red.
• If the parent of the new node is black, the properties are preserved.
• If the parent of newnode is red, then check the color of the sibling of the new node's parent

• Case 1: Uncle is Red (Recoloring needed):
• Recolor the parent and uncle to black.
• Recolor the grandparent to red.
• Set the grandparent as the new node to be examined and repeat the validation

process.
• Case 2: Uncle is Black, or null

• Perform a rotation on the grandparent and Recolor .
• former parent to black and the grandparent to red(in LL or RR rotations).
• In LR or RL rotation re color accordingly

• Adjust the Root:
• If rotations have been performed, the root node might have changed. Ensure the root is

still black.
• Continue Until the Tree is Fixed:

• Continue the validation and re-balancing process until all Red-Black Tree properties are
satisfied.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Insert the following sequence of information in an empty red-black tree 1, 2, 3,
4, 5, 6, 7, 8 and 9 ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Insert the following sequence of information in an empty red-black tree 41, 38,
31, 12, 19, 8 ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Insert the following sequence of information in an empty red-black tree 10, 18,
5, 4, 15, 17, 25, 60, 1, 90 ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Insert the following sequence of information in an empty red-black tree 10, 18,
5, 4, 15, 17, 25, 60, 1, 90 ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Deletion in a Red-Black Tree involves several steps and can be more complex than insertion due to the need to maintain the red-black
properties post-deletion. Here's a simplified step-by-step process for deleting a node from a Red-Black Tree:

• Find the Node: Locate the node you wish to delete using standard binary search tree deletion steps. If the node has two children, find the in-
order successor (or predecessor) and swap its value with the node to delete.

• Remove the Node: Delete the node from the tree. There are three possible scenarios:
• Deleting a node with no children: simply remove the node.
• Deleting a node with one child: replace the node with its child.
• Deleting a node with two children: replace the node with its in-order successor (or predecessor), which will have at most one child, and

then delete the successor.
• Fixing Double Black Issue:

• If you removed a red node, the properties still hold. If a black node was removed, this creates a "double black" issue, where one path has
one fewer black node.

• The node that replaces the deleted node (if any) is marked as "double black," which means it either has an extra black than it should, or
it's black and has taken the place of a removed black node.

• Rebalance the Tree: To resolve the "double black" issue, several cases need to be handled until the extra blackness is moved up to the root
(which can then be discarded) or until re-balancing is done:

• Case 1: Sibling is red - Perform rotations to change the structure such that the sibling becomes black, and then proceed to other cases.
• Case 2: Sibling is black with two black children - Repaint the sibling red and move the double black up to the parent.
• Case 3: Sibling is black with at least one red child - Perform rotations and recoloring so that the red child of the sibling becomes the

sibling's parent. This corrects the double black without introducing new problems.
• Termination: The process terminates when:

• The double black node becomes the root (simply remove the extra blackness).
• The double black node is red (simply repaint it to black).
• The tree has been adjusted to redistribute the black heights and remove the double blackness.

• Update Root: After rotations and recoloring, the root might change, so ensure the root of the tree is still black.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Insert the nodes 15, 13, 12, 16, 19, 23, 5, 8 in empty red-black tree and delete in
the reverse order of insertion?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Insert the following element in an initially empty RB-Tree 12, 9, 81, 76, 23, 43, 65, 88, 76, 32,
54. Now delete 23 and 81 ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Insert the elements 8, 20, 11, 14, 9, 4, 12 in a Red-Black tree and delete 12, 4, 9, 14
respectively ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following RB Tree and delete 55, 30, 90, 80, 50, 35, 15 respectively ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following RB Tree and delete 55, 30, 90, 80, 50, 35, 15 respectively ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Binomial Tree
• Development and Context: Binomial trees as a data structure were developed as part of the broader

exploration of efficient data structures for priority queue operations. They were introduced as a key
component of binomial heaps.

• Key Contributors: The concept of the binomial heap, which uses binomial trees, was introduced by J.
W. J. Williams in 1964. Later, it was further developed and popularized by Jean Vuillemin in 1978.

• Evolution of Heaps: Prior to binomial heaps, binary heaps were commonly used for priority queues.
Binomial trees and heaps were an evolution in this area, offering more efficient solutions for certain
operations.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Binomial Tree
• A binomial tree is a specific kind of tree used in certain data structures such as

binomial heaps.
• Recursive Definition: A binomial tree of order 0 is a single node. A binomial

tree of order k consists of two binomial trees of order k−1 linked together:
one is the leftmost child of the root of the other.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Binomial Tree Properties
• A binomial tree of order k has exactly 2k nodes. The height of a binomial tree of order k is k
• The height of a binomial tree Bk is k. That is, the tree has k+1 levels, indexed from 0 to k.
• The number of nodes at depth i in a binomial tree of order k is given by the binomial coefficient

kCi i=0,1,…,k.
• The root of a binomial tree Bk will have a degree k, which will be greater than any other nodes.
• The root node of a binomial tree of order k has a degree of k, and it has k children. The children

are themselves root nodes of binomial trees of orders k−1,k−2,…,0, respectively.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Binomial Heap
• A binomial heap is implemented as a collection of binomial tree. It keeps data sorted and

allows insertion and deletion in amortized time.
• Properties:

• Unlike a binary heap, which is a single tree, a binomial heap is a collection of trees. which
are ordered and comply with the min-heap (or max-heap) property.

• Each binomial tree in a binomial heap has a different order
• The heap with n elements will have at most logn + 1 binomial trees. Because binary

representation of n has logn +1 bits.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

logn

logn

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Construct the binomial heap for the following sequence of number 4, 6, 3, 11,
9, 5, 14, 10, 21, 7, 13, 20, 2 ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Construct the binomial heap for the following sequence of number 4, 6, 3, 11,
9, 5, 14, 10, 21, 7, 13, 20, 2 ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion in Binomial Heap Algorithm
• Create New Tree: Form a new single-node binomial tree with the insertion

value.
• Union Heaps: Merge this new tree with the existing binomial heap.

• Combine trees of the same degree as necessary.
• Update Heap: Set the merged heap as the main heap.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Extract Min in Binomial Heap Algorithm

• Find Minimum: Traverse the root list to find the binomial tree with the minimum root
key. Let's call this tree B_min.

• Remove B_min: Remove B_min from the root list of the heap.
• Reverse Children of B_min: Reverse the order of the children of B_min, which are

now roots of binomial trees, and create a new binomial heap H' with these trees.
• Union Heaps: Perform a union operation between the original heap (without B_min)

and H'.
• Update Pointers: Update the root list and the minimum element pointer of the heap.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Decrease Key in Binomial Heap Algorithm

• Update Key: Assign new, smaller value to node x.
• Bubble Up: If ‘x’ key is less than its parent's, swap x with its parent. Repeat until

heap order is restored.
• Update Min: Optionally, update the heap's minimum pointer.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Deletion in Binomial Heap Algorithm

• Decrease Key: Decrease the key of the node to be deleted to a value less than or equal to the
minimum value in the heap (typically this could be set to negative infinity or a value you
know is the smallest possible in your system).

• Extract Min: Perform the 'Extract Min' operation to remove the node with the minimum key,
which is now the node you wanted to delete.

• Maintain Heap: The 'Extract Min' operation will also take care of maintaining the heap
properties after deletion.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Fibonacci Heaps
• Michael L. Fredman and Robert E. Tarjan developed Fibonacci heaps in 1984

and published them in a scientific journal in 1987. Fibonacci heaps are named
after the Fibonacci numbers, which are used in their running time analysis.

http://www.knowledgegate.in/GATE
https://en.wikipedia.org/wiki/Michael_Fredman
https://en.wikipedia.org/wiki/Robert_Tarjan
https://en.wikipedia.org/wiki/Fibonacci_number

http://www.knowledgegate.in/GATE

Fibonacci Heaps
• Fibonacci Heaps, introduced in 1984, enhance priority queue operations for

algorithms like Dijkstra's and Prim's. They feature lazy consolidation and
efficient decrease-key operations with O(1) amortized time, and O(logn) for
deletions. Ideal for sparse graphs and network optimization, their complex
structure is best for large-scale applications where their amortized time benefits
are most impactful.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• A Fibonacci Heap is a collection of unordered trees which satisfies the min-heap (or max-heap) property.

• Structure: It consists of a set of marked trees. Each tree is a rooted but unordered tree that obeys the min-heap
property.

• Lazy Organization: Trees within a Fibonacci Heap are not necessarily binomial trees, and the heap does not
enforce strict structure. Trees are linked together only as necessary, which usually occurs during extract-min
operations.

• Node Marking: Nodes in a Fibonacci Heap can be marked, which indicates that a child has been lost since this
node was added to its current parent. This is part of the mechanism to limit the degree (number of children) of
nodes.

• Mechanism: When a child node is removed from a parent (which can happen during certain heap operations),
the parent node gets marked. If a marked node loses another child, it's removed from its parent, potentially
causing a cascade of changes up the heap.

• Consolidation: After the removal of the minimum node, the remaining trees are consolidated into a more
structured heap. This operation is "lazy" and is done only when necessary, such as during extract-min operations,
to keep the number of trees small.

• Degree and Number of Children: The size of a tree rooted at a node is at least Fk+2, where k is the degree of the
node, and F is the Fibonacci sequence. This ensures that the heap has a low maximum degree.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Amortized Costs:
• Insert: O(1) amortized
• Decrease Key: O(1) amortized
• Merge/Union: O(1) amortized
• Extract Min: O(logn) amortized
• Delete: O(logn) amortized

• The Fibonacci Heap is ideal for applications where the number of insertions and decrease-key
operations vastly outnumber the number of extract-min and delete operations, thus taking
advantage of the low amortized costs for the former operations. Its complexity comes into play
in theory more than in practical applications due to constants and lower-order terms involved
in its operations.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Insertion in a Fibonacci heap is a simple and efficient operation. Here's how it is typically
implemented:
• Create a New Node: A new node containing the key to be inserted is created.
• Add to Root List: This new node is added to the list of roots in the Fibonacci heap.
• Update Minimum: If the new key is smaller than the current minimum key in the heap,

the minimum pointer is updated to this new node.
• Amortized Cost: The operation runs in O(1) amortized time, making it very efficient.

• The simplicity of the insertion operation is due to the lazy approach of Fibonacci heaps, where
no immediate reorganization or consolidation of the heap is performed at the time of
insertion.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Decrease key in a Fibonacci heap is an operation to reduce the value of a given node and then adjust the heap to
maintain the heap property. Here's how it works:
• Decrease the Key: Update the value of the node to the new lower key.
• Check Heap Property: If the new key is still greater than or equal to the parent's key, the heap property is

maintained, and no further action is required.
• Cut and Add to Root List: If the new key violates the heap property (it's now less than the parent's key), cut

this node from its parent and add it to the root list.
• Mark the Parent: If the parent node was unmarked, mark it. If it was already marked, cut it as well and add

it to the root list, then continue this process recursively up the tree.
• Update Minimum: If the new key is less than the current heap's minimum key, update the minimum pointer.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Merging in a Fibonacci heap, also known as the union operation, is the process of combining two Fibonacci
heaps into a single heap. This operation is efficient and is performed in the following way:
• Concatenate Root Lists: Combine the root lists of the two heaps into a single root list, which can be done in

O(1) time since the root lists are typically circular doubly linked lists.
• Update Minimum: Check the minimum nodes of both heaps and update the pointer to the minimum node if

necessary.
• No Immediate Consolidation: Unlike other heap structures, the trees are not consolidated right away. This is

part of the lazy strategy of Fibonacci heaps, which delays work until it's needed (e.g., during an extract-min
operation).

• Amortized Cost: The amortized cost of the merge operation is O(1).
• The merge operation in Fibonacci heaps is a foundational operation that supports the efficiency of other heap

operations, like insertions and decrease-key, because it enables the heap to maintain a more flexible structure.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The "Extract Min" operation in a Fibonacci heap is used to remove and return the smallest key in the heap.
It's a key operation that involves more restructuring of the heap compared to other operations. Here's a
step-by-step description:

• Remove the Minimum Node: Take out the node containing the minimum key from the root list. This node
will be returned at the end of the operation.

• Add Children to Root List: The children of the minimum node are added to the root list of the heap.
• Consolidate the Heap: This step restructures the heap to ensure that no two trees have the same degree in

the root list:
• Pairwise combine trees in the root list that have the same degree until every tree has a unique degree.
• During this process, link trees by making the one with the larger root a child of the one with the smaller

root.
• Find New Minimum: Traverse the root list to find the new minimum node and update the heap's minimum

pointer.
• Time Complexity: The worst-case time complexity for this operation is O(logn), but this is the amortized

complexity because the actual work is done during the consolidation step, which doesn't happen on every
operation.

• Amortized Cost: The amortized cost is O(logn) due to the potential increase from the previous operations
which pays for the consolidation.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The delete operation in a Fibonacci heap removes a specific node from the heap. It's more complex
than the extract-min operation because it requires locating the node to be deleted, regardless of its
position in the heap. Here's how the delete operation works:
• Decrease Key to Minus Infinity: Decrease the key of the node to be deleted to the smallest

possible value. This is often done by setting it to negative infinity or a value lower than any other in
the heap.

• Extract Min: Perform the extract-min operation, which will now remove the node with the
decreased key since it's the smallest in the heap.

• Consolidate the Heap: If necessary, during the extract-min operation, the heap is consolidated to
ensure that it maintains the correct structure, merging trees where necessary.

• Time Complexity: The time complexity for the delete operation is O(logn) amortized, due to the
extract-min operation that is invoked.

• By combining the decrease-key and extract-min operations, the delete operation ensures that the heap
remains properly structured and that the min-heap property is maintained throughout.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Procedure Binary Heap Binomial Heap Fibonoci Heap
Make Heap O(1) O(1) O(1)

Insert O(logn) O(logn) O(1)
Min O(1) O(logn) O(1)

Extract min O(logn) O(logn) O(logn)

Union O(n) O(logn) O(1)

Decrease Key O(logn) O(logn) O(1)

Delete O(logn) O(logn) O(logn)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Tries
• A Trie, also known as a prefix tree, is a tree-like data structure that stores a

dynamic set of strings, usually for retrieval of keys by prefix. It is a type of
search tree—an ordered tree data structure used for locating specific keys from
within a set.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Requirements:
• Efficient Storage: Tries are used to store strings efficiently for retrieval by prefix,

which can reduce space requirements compared to naive storage methods.
• Prefix Lookup: Tries must support fast lookup to check whether a string is in a

set, which is particularly efficient when dealing with prefixes.
• Dynamic: They must allow insertion and deletion of keys.
• Definition:

• A Trie is a hierarchical data structure consisting of nodes with pointers to
their children along with associated characters. Each node represents a
common prefix shared by some keys, and each path down the tree
represents a key (usually a string).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Properties:
• Edges: Each edge in a Trie is labelled with a character or a substring.
• Root Node: The root node is usually an empty string and does not hold any

character.
• Nodes: Internal nodes, which can have multiple children, store the common

prefixes of the strings. Leaf nodes represent the end of a particular key.
• Path: A path from the root to a leaf or a node with a non-null value

represents a word or a prefix to a word.
• Time Complexity: The time complexity for inserting, searching, and deleting

from a Trie is O(m), where m is the length of the key.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Autocomplete: Tries are well-suited for implementing autocomplete features in
search engines and text editors due to their efficient prefix searching
capabilities.

• Spell Checking: They can be used for spell checking as one can quickly check the
existence of a word or prefix.

• IP Routing: Tries are used in IP routing to store and search IP addresses.
• Bioinformatics: In bioinformatics, tries are used for tasks such as genome

analysis where sequences of DNA are stored and searched.
• Text Games: Games like Scrabble use tries to validate words and search for

possible words with given letters.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Skip List
• A Skip List is a data structure that allows fast search within an ordered sequence

of elements. It does this by maintaining a hierarchy of linked lists that skip over a
subset of the elements.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Requirements:
• Ordered Elements: Elements must be maintained in a sorted order.
• Multiple Levels: Skip lists consist of several layers of linked lists, where the

bottom layer is the ordinary list of all elements.
• Randomization: The structure of skip lists is probabilistic, typically decided by

coin flips or a random number generator to determine the height of each
element's "tower."

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Properties:
• Efficient Search: Provides logarithmic search time similar to binary search trees.
• Probabilistic Balancing: Unlike trees, skip lists do not require re-balancing

operations.
• Ease of Implementation: Simpler to implement than balanced trees.
• Memory Overhead: May require additional space compared to a standard linked

list due to multiple levels.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Applications:
• Databases: Skip lists are used in database indices where quick search, insertion,

and deletion are necessary.
• Probabilistic Data Structures: Can be part of larger data structures that deal

with approximations or probabilistic results.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion Algorithm:
• Search for the position where the new element should be inserted, starting

from the top level and moving down.
• Insert the element in the lowest level linked list.
• Randomly decide the number of levels the new element should participate in.
• Add the element to each of the higher levels according to the decision in step 3.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Deletion Algorithm:
• Locate the element in the bottom list and in every list where it appears.
• Remove the element from all the levels of the list where it is found.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Searching Algorithm:
• Start from the head element of the top list.
• Move forward until the next element is greater than the search key.
• Move down one level and continue the search.
• If the bottom level is reached, the search either finds the element or

determines it's not in the list.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Complexity:
• Search: Average O(logn), Worst-case O(n) (if unlucky with

randomization).
• Insertion: Average O(logn), Worst-case O(n).
• Deletion: Average O(logn), Worst-case O(n).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Ch-9
Selected Topics

Algebraic Computation, Fast Fourier
Transform, String Matching, Theory of

NPCompleteness, Approximation

Algorithms and Randomized Algorithms .

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Fast Fourier Transformation
• What it is: FFT is a quick way for computers to change how they look at a list of numbers.

Instead of seeing them just as a sequence over time, it helps the computer see what cycles or
patterns (frequencies) are in that list.

• Why it's special: It does its job really fast compared to older methods. Imagine having to
check every book in a library to find one book, versus having a quick way to go right to the
shelf where the book is.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Where it's used: It's like a tool in a toolbox that can be used for many things, like making
music sound better, getting clear pictures for doctors to see inside the body, and even for
phones to send messages without wires.

• Types: There's a common kind of FFT that works best when the list of numbers has a total
that's a "power of two" (like 2, 4, 8, 16, and so on).

• What it does: It helps us understand different pitches in music or bright and dark spots in
images by breaking them down into simpler parts that are easier to work with or understand.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

String matching
• String matching, often referred to as "pattern matching," is the process of finding one or

more instances of a string (pattern) within another string (text). The goal is to find all the
positions at which the pattern appears in the text.

• String Matching Problem: The string-matching problem is a classic problem in computer
science where you want to find all occurrences of a shorter string (a "pattern") within a
longer string (a "text"). It's a foundational problem with applications in text editing, DNA
sequence analysis, and information retrieval, among others.

• For example, in the string "abracadabra," you might want to find where the substring "abra"
appears. The answer would be at positions 1 and 8.

•

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• String: A string is a sequence of characters. The characters can be letters, numbers, or
symbols. For example, "hello" is a string made of 5 characters.

• Substring: A substring is any continuous sequence of characters within a string. For instance,
"hello" contains the substrings "he," "ell," "llo," "hello," etc. A substring can be as short as
one character or as long as the entire string itself.

• Proper Substring: A proper substring is a substring that is strictly contained within a string
and is not equal to the string itself. So, for "hello," "hell" or "ello" would be proper
substrings, but "hello" would not be a proper substring of itself.

•

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Naive Algorithm
• The Naive algorithm is the simplest method where you slide the pattern over the text

one character at a time and check for a match.
• Imagine you lost a small toy in a long hallway. The naive way to find it would be to

walk along the hallway and check every single spot on the floor, one by one, until you
find the toy.

• Pros:
• Very simple to understand and implement.
• Works well when the patterns are short and the text is not too large.

• Cons:
• Can be very slow, especially if the pattern occurs frequently but with mismatches.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

String : a b c d e f g h

Pattern : d e f

String: a b c d a b c a b c d f

Pattern: a b c d f

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

NAIVE-STRING-MATCHER (T, P)
{
 n = T.length
 m = P.length
 for s = 0 to n- m
 if P[1..m] == T[s + 1 ..s + m]
 print "Pattern occurs with shift" s
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Rabin-Karp Algorithm
• In computer science, the Rabin–Karp algorithm or Karp–Rabin

algorithm is a string-searching algorithm created by Richard M.
Karp and Michael O. Rabin (1987) that uses hashing to find an exact
match of a pattern string in a text.

http://www.knowledgegate.in/GATE
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/String-searching_algorithm
https://en.wikipedia.org/wiki/Richard_M._Karp
https://en.wikipedia.org/wiki/Richard_M._Karp
https://en.wikipedia.org/wiki/Michael_O._Rabin
https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
https://en.wikipedia.org/wiki/Hash_function

http://www.knowledgegate.in/GATE

Rabin-Karp Algorithm
• The Rabin-Karp algorithm uses hashing to find any set of pattern occurrences. Instead of

checking all characters of the pattern at every position (like the naive algorithm), it checks a
hash value.

• Think of it like looking for a specific page in a book by its unique code instead of by reading
every word. If the page number (hash) matches, then you check to make sure it's really the
page you're looking for.

• Pros:
• Faster than the naive approach on average.
• Very efficient for multiple pattern searches at once.

• Cons:
• Requires a good hash function to avoid frequent spurious hits.
• The worst-case time complexity can be as bad as the Naive algorithm if many hash

collisions occur.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Text: a a a a a b

Pattern: a a b

a-1
b-2
c-3
d-4
e-5
f-6
g-7
h-8
i-9

j-10

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Text: a b c d a b c e

Pattern: b c e

a-1
b-2
c-3
d-4
e-5
f-6
g-7
h-8
i-9

j-10

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Text: c c a c c a a e d b a

Pattern: d b a

Spurious Hits O(mn)

a-1
b-2
c-3
d-4
e-5
f-6
g-7
h-8
i-9

j-10

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Knuth-Morris-Pratt (KMP) Algorithm

• The algorithm was conceived by James H. Morris and independently
discovered by Donald Knuth "a few weeks later" from automata
theory.[1][2] Morris and Vaughan Pratt published a technical report in
1970.[3] The three also published the algorithm jointly in 1977.[1]

http://www.knowledgegate.in/GATE
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/James_H._Morris
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://en.wikipedia.org/wiki/Vaughan_Pratt
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm

http://www.knowledgegate.in/GATE

Knuth-Morris-Pratt (KMP) Algorithm

• The KMP algorithm is smarter. It pre-processes the pattern to understand its structure and
eliminates unnecessary comparisons when a mismatch occurs.

• Pros:
• The algorithm ensures that the characters of the text are never compared more than once,

which makes it very efficient.
• No backtracking is needed, so it's more efficient than the naive approach.

• Cons:
• The pre-processing step requires additional time and memory.
• The algorithm is more complex to understand and implement.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

P1: a b a b

P2: a b c d a b c y

P3: a b c d a b e a b f

P4: a b c d e a b f a b c

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

String: a b a b c a b c a b a b a b d

Pattern: a b a b d

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

KMP-MATCHER (T, P)
{
 n = T.length
 m = P.length
 pie = COMPUTE-PREFIX-FUNCTION(P)
 pie = 0
 for i = 1 to n
 while q > 0 and P[q + 1] ‡ T[i]
 q = pie[q]
 if P[q + 1] == T[i]
 q = q + 1
 if q == m
 print "Pattern occurs with shift i-m
 q = pie[q]
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

COMPUTE-PREFIX-FUNCTION(P)
{
 M = P.LENGTH
 Let pie[1 . . . m] be a new array
 pie[1] = 0
 k = 0
 for q = 2 to m
 whilek>o and p[k+1] ‡ p[q]
 k=pie[k]
 if p[k+1] == p[q]
 k=k+1
 pie[q] = k
 return pie
 }

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

What computer science deals with?

• Don’t
• So we do not study how to design a computer
• We do not study how to run a computer

• Do
• We deal with problem solving, according to computer science a problem can

be divided as follows

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

PROBLEM

SOLVABLE

DECIDABLE

P TYPE NP TYPE

UNDECIDABLE

UNSOLVABLE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Konigsberg Bridge Problem

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• SOLVABLE - A problem is said to be solvable if either we can solve it or if we can
prove that the problem cannot be solved

• UNSOLVABLE - A problem is said to be unsolvable if neither we can solve it, nor
we can proof that the problem can not be solved

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Decidable- if there exist a polynomial time algorithm to solve a problem then
problem is said to be decidable.

• Undecidable- if there exist a non- polynomial time algo to solve a problem.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• P Type - a problem is said to be P type is there exist a polynomial time algo to solve a
problem

• NP Type – a problem is said to be NP type if there exist a np time algo to solve a problem on a
deterministic machine or there exist a polynomial time algo to verify a problem

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• In computational complexity theory, the Cook–Levin theorem, also known
as Cook's theorem, states that the Boolean satisfiability problem is NP-complete.
That is, it is in NP, and any problem in NP can be reduced in polynomial time by
a deterministic Turing machine to the Boolean satisfiability problem.

• An important consequence of this theorem is that if there exists a deterministic
polynomial time algorithm for solving Boolean satisfiability, then
every NP problem can be solved by a deterministic polynomial time algorithm.
The question of whether such an algorithm for Boolean satisfiability exists is thus
equivalent to the P versus NP problem, which is widely considered the most
important unsolved problem in theoretical computer science.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE
Stephen	A.	Cook	1968

Stephen	A.	Cook	2008

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• During his PhD, Cook worked on complexity of functions, mainly on multiplication. In his seminal 1971 paper "The
Complexity of Theorem Proving Procedures", Cook formalized the notions of polynomial-time reduction (a.k.a. Cook
reduction) and NP-completeness, and proved the existence of an NP-complete problem by showing that
the Boolean satisfiability problem (usually known as SAT) is NP-complete.

• This theorem question asks whether every optimization problem whose answers can be efficiently verified for
correctness/optimality can be solved optimally with an efficient algorithm.

• Cook conjectures that there are optimization problems (with easily checkable solutions) which cannot be solved by
efficient algorithms, i.e., P is not equal to NP. This conjecture has generated a great deal of research
in computational complexity theory, which has considerably improved our understanding of the inherent difficulty of
computational problems and what can be computed efficiently. Yet, the conjecture remains open.

• In 1982, Cook received the Turing award for his contributions to complexity theory.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Graph coloring
• 3-Sat
• Cliuqe
• Hamiltonian circuit
• Knapsack problem
• Vertex cover
• Set cover
• Partition problem
• Independent set
• Travelling salesman problem
• Job scheduling

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Approximation Algorithm

• An approximation algorithm is a type of algorithm used for solving optimization problems. The key
characteristics of an approximation algorithm are:
• Purpose: It is used when finding the exact solution is too time-consuming, complex, or when an

exact solution may not even be necessary.
• Performance: It quickly finds a solution that is close to the best possible answer, or "optimal

solution."
• Guarantee: It provides a provable guarantee on how close the output is to the optimal solution,

usually expressed as a factor of the optimal value.
• Complexity: Often, the problems tackled by approximation algorithms are NP-hard, meaning that

no known polynomial-time algorithms can solve these problems to optimality.
• Use Cases: They are commonly used in fields such as operations research, computer science, and

engineering for problems like scheduling, packing, and routing where exact solutions are less
feasible as the problem size grows.

• The concept of approximation is fundamental in scenarios where a perfectly precise answer is
either impossible or impractical to obtain, and thus a solution that is "good enough" is acceptable
given the constraints of time and resources.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Feature Approximation Algorithm Deterministic Algorithm

Outcome Produces a solution close to the
optimal, with some error margin.

Produces a consistent and exact
output for a given input.

Predictability The solution quality is predictable,
but the exact output may vary.

The output is entirely predictable
and does not vary.

Optimization Problems
Often used for optimization
problems where exact solutions
are hard.

Used for problems where an exact
solution is required and feasible.

Nature Can be either deterministic or
non-deterministic.

Always deterministic; follows a single
path to a solution.

Resource Usage
Designed to find a good solution
within reasonable time and
resources.

Time and resources depend on
algorithm complexity and input size.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The approximation ratio of an algorithm for an optimization problem is a
measure of how close the algorithm's solution is to the optimal solution.

• Showing that a particular algorithm for TSP is a 2-approximation means proving
that the length of the tour produced by the algorithm is no more than twice the
length of the optimal tour.

• Vertex cover problem is also 2-approximate.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Randomized algorithms
• Randomized algorithms are algorithms that make random choices during their process to

simplify the solution of complex problems. They are particularly useful in situations where the
input is large or the algorithm needs to be immune to certain worst-case scenarios that can
cause deterministic algorithms to perform poorly.

• Simplification of Algorithms: They can simplify complex algorithms by replacing a
deterministic step with a random one.

• Performance: On average, they often perform better than their deterministic
counterparts. Their performance is typically analyzed in terms of expected running time or
probability of correctness.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Las Vegas algorithms: They always produce the correct result, but the amount
of time they take to complete may vary. For example, the Quickselect algorithm
for finding the k-th smallest element in an array.

• Monte Carlo algorithms: They have a chance of producing an incorrect result
but run in guaranteed polynomial time. An example is the Monte Carlo
algorithm for primality testing.

• Applications: They are used in various fields, including cryptography, numerical
analysis, data structures, optimization, and more.

• Advantages: They can avoid bad worst-case scenarios by randomizing choices,
making it unlikely to encounter the worst case. They are often easier to
implement and understand than their deterministic counterparts.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Aspect Las Vegas Algorithm Monte Carlo Algorithm

Result
Accuracy

Always accurate; results are either correct or
the algorithm does not provide an answer.

Results are probabilistically accurate; there's a
non-zero chance of error.

Execution
Time

Variable; can take a long time to find a solution,
but the solution is correct.

Typically faster; provides approximate
solutions in a reasonable time frame.

Use Cases Used in scenarios where correctness is crucial,
like cryptographic algorithms.

Suitable for problems where approximate
solutions are acceptable, like in simulations
and optimizations.

Termination Guaranteed to terminate with a correct
solution or no solution at all.

Usually terminates in a fixed amount of time,
but may not always provide a precise solution.

Examples Algorithms for exact string matching, like the
Rabin-Karp algorithm.

Algorithms for numerical integration,
simulations in physics, and optimization
problems.

http://www.knowledgegate.in/GATE

